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Abstract. We compare vector boson fusion and quark antiquark annihilation production of vector boson
pairs at the LHC and include the effects of anomalous couplings. Results are given for confidence intervals
for anomalous couplings at the LHC assuming that measurements will be in agreement with the standard
model. We consider all couplings of the general triple vector boson vertex and their correlations. In addition
we consider a gauge invariant dimension-six extension of the standard model. Analytical results for the
cross sections for quark antiquark annihilation and vector boson fusion with anomalous couplings are given.

1 Introduction

In this note we study vector boson pair production with
possible anomalous couplings in proton proton collisions
at the LHC. The motivation to study these processes has
been twofold:

1. If the electroweak symmetry breaking is not realized by
a light Higgs boson, the symmetry breaking will man-
ifest itself by some strong interactions among longi-
tudinally polarized gauge bosons [1,2]. In general, the
amplitudes for longitudinal vector boson scattering are
then very large at high energies. Several models to de-
scribe the strongly coupled symmetry breaking, in par-
ticular the standard model with a heavy Higgs boson
and technicolor inspired models, have been discussed
[3–6]. If an amplitude has been calculated within a
specific model, a method to connect this amplitude
to parton parton scattering processes has to be em-
ployed. The conventional method [7–10] was to use
the effective vector boson approximation (EVBA) [11].
The EVBA was originally used only for longitudinally
polarized vector bosons. It was however also applied to
all intermediate helicity states [5] despite of the known
problems with the EVBA for the transverse helicities
[12].
Avoiding the use of the EVBA, the quark-quark scat-
tering processes q1q2 → V3V4q

′
1q

′
2 were calculated ex-

actly in lowest order of perturbation theory [3,6]. In
addition to the vector boson scattering diagrams, dia-
grams of bremsstrahlung type have to be evaluated in
the exact calculation.
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2. On the other hand one may assume that the symmetry
breaking is realized by a light Higgs boson. In this case
the dominating processes for vector boson pair produc-
tion are those of direct quark antiquark annihilation,
also called Drell-Yan processes. The rates for these pro-
cesses are sensitive to the values of the couplings of
the electroweak vector bosons among each other [13].
Drell-Yan production with anomalous (=non-standard)
couplings has been studied in [14–20]. O(αs) correc-
tions have been taken into account in [21–26]. The
vector boson scattering processes were not considered
in these works. The common argument to omit these
processes was that they are O(α4) and therefore sup-
pressed with respect to the Drell-Yan processes. How-
ever, a particular case in which these processes can
give a significant contribution is near a Higgs boson
resonance. In the study [27] of the signal of a resonant
Higgs boson both the Drell-Yan processes, including
the O(αs) corrections [28], and the exact matrix el-
ement for q1q2 → V3V4q

′
1q

′
2 were taken into account.

Also in [29], the processes q1q2 → V3V4q
′
1q

′
2 were in-

cluded. These calculations however were only for stan-
dard vector boson self couplings and the rates for the
two different production mechanisms have not been
explicitly compared.

In summary, in the strongly interacting scenario particu-
lar attention was paid to the vector boson scattering pro-
cesses while the analyses of vector boson self couplings
only considered the Drell-Yan processes.

Later on, the effects of various SU(2)L × U(1)Y gauge
invariant effective interaction terms among the electroweak
vector bosons were investigated and the vector boson scat-
tering processes were considered [30,31] together with the
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Drell-Yan processes. It was found that the Drell-Yan con-
tribution and the one of vector boson scattering were of
comparable magnitude. However, as in [5], the vector bo-
son scattering processes were calculated using the EVBA
for all intermediate boson helicities.

Recently [32,33] we showed that an improved version
of the EVBA can increase the reliability of EVBA cal-
culations. In particular, the improved EVBA could well
reproduce the result of a complete perturbative calcula-
tion for a process which is dominated by the transverse
intermediate helicities.

In this article we carry out a comparison of Drell-
Yan production and vector boson scattering using the im-
proved EVBA and including the influence of anomalous
couplings. This work is thus a supplement to the exist-
ing analyses [14,24–26] in which the Drell-Yan processes
have been considered in more detail (O(αs) corrections
were included and more refined kinematical cuts were ap-
plied), but vector boson scattering was not discussed. We
will study the general parametrization [16], [34–38] of the
triple gauge boson vertices in terms of seven parameters,
allowing for C- and P -violation. In addition, we will study
an SU(2)L × U(1)Y gauge invariant dimension-six exten-
sion of the standard model. Our work extends the works
[30,31] in that all three C- and P -invariant gauge invari-
ant dimension-six operators [39–42] which affect the vec-
tor boson self-interactions are discussed. We note that the
three C- and P -invariant trilinear couplings which poten-
tially contribute to the experimentally relevant [13] pro-
cess of W±Z Drell-Yan production can be equivalently ex-
pressed in terms of the parameters of the three-parameter
gauge invariant model. The same is true for the two C-
and P -invariant couplings which potentially contribute to
the similarly relevant process of W±γ production.

In Sect. 2 we compare vector boson fusion and Drell
Yan production in the three-parameter gauge invariant
model. In Sect. 3, we present parameter fits for the anoma-
lous couplings which can be obtained from future LHC
measurements assuming that standard model predictions
will actually be measured. We discuss the full set of anoma-
lous couplings and also give the unitarity limits for the
set of couplings which we use. We also consider again the
three-parameter gauge invariant model. In Appendix A
we give analytical formulas for the cross sections for qq̄′
annihilation into W±Z, W±γ and W+W− pairs in terms
of the seven anomalous couplings. In Appendix B we give
formulas for vector boson scattering cross sections for the
gauge invariant model.

2 Comparison of vector boson fusion and
Drell-Yan production

To illustrate our results we calculate the invariant mass
distributions of the cross sections for vector boson pair
production at the LHC (pp collisions at √

spp = 14 TeV).
We compute both the contribution from Drell-Yan pro-
duction and from the O(α4) parton reaction q1q2 →
→ V3V4q

′
1q

′
2 which contains vector boson scattering. The
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Fig. 1. Diagrammatic representations for the production of a
vector boson pair V3V4 in the collision of two hadrons h1h2.
a: via the quark antiquark annihilation mechanism. b: via the
O(α4) parton reaction q1q2 → V3V4q

′
1q

′
2

two contributions are shown diagrammatically in Fig. 1.
Both contributions are calculated in the Born approxima-
tion and we use the improved EVBA [32,33] to calculate
the latter contribution.

2.1 Calculational procedure

2.1.1 Drell-Yan production

In the usual quark-parton description, the lowest order
contribution comes from the Drell-Yan processes shown in
Fig. 1a. Three generic Feynman diagrams can contribute
to any of these processes in lowest order (Fig. 2). They
correspond to the exchange of vector boson(s) in the s-
channel and the exchange of fermions in the t- and in the
u-channel. Only the vector boson exchange diagrams re-
ceive a contribution from the vector boson self-couplings.
The standard model differential cross sections for qq̄′ →
V3V4 have been first given in [43]. The results for arbi-
trary αW can be found in [30]. For arbitrary vector boson
self couplings, demanding only Lorentz-invariance, the dif-
ferential cross sections as well as the expressions for the
helicity amplitudes have been recently given for all pro-
cesses in analytical form in [44]. We choose to repeat the
formulas for the differential cross sections in Appendix A
in a form in which the high energy behavior is immedi-
ately transparent. We note that the O(αs)-corrections to
the lowest order cross sections can be huge. For W±Z
production [25] they can reach up to 70% of the lowest or-
der contribution and for W±γ production [20] they can be
even larger. Only the Born cross section will be considered
here.

The formula for the invariant mass distribution of the
cross section for V3V4-pair production via qq̄′-annihilation
in the collision of two hadrons h1h2 is given by

dσ

dMV3V4

(h1h2 → qq̄′ → V3V4, shh)|cut

=
2MV3V4

shh

ymax∫
−ymax

dy
∑
(qq̄′)

[
fh1

q (
√

xey, Q2
1)

×fh2
q̄′ (

√
xe−y, Q2

2) + h1 ↔ h2

]
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×
zmax(y)∫

zmin(y)

d cos θ
dσ

d cos θ
(qq̄′ → V3V4) . (1)

This formula is valid if either no cuts or a rapidity or
a pseudorapidity cut on both produced vector bosons is
applied. A pseudorapidity cut, in contrast to a rapidity
cut, always excludes events near the hadron beam direc-
tion. In (1),

√
shh and MV3V4 are the invariant masses of

the hadron pair and the vector boson pair, respectively, y
is the rapidity of the qq̄′-pair in the h1h2 center-of-mass
system (c.m.s.) and x ≡ M2

V3V4
/shh. The quantities fhi

q

denote the parton distributions in the hadrons and the
quantities Q2

i are the factorization scales. θ is the angle
between the quark q and the vector boson V3 in the c.m.s.
of the quarks. Applying no cuts, the limits of integration
in (1) are ymax = 1

2 ln(1/x) and zmin(y) = zmax(y) = 1.
We choose here to apply a pseudorapidity cut η on both
produced vector bosons. This cut is equivalent to a min-
imum required angle ϑmin between the direction of mo-
mentum of any of the produced vector bosons and the
hadron beam direction. The cut η is related to ϑmin by
tanh(η) ≡ cos ϑmin. The integration limits with an η-cut
in the h1h2 c.m.s. are given by

ymax

= min
[
1
2

ln
(

1
x

)
,

tanh−1

(√
1

1 + (min(E2
3 , E2

4)/q2) tan2 ϑmin

)
,

tanh−1

(√
1

1 + (max(M2
3 , M2

4 )/q2) sin2 ϑmin

)]
,

z min
max

(y)

=
1

q(1 + t2γ2)
max
min

[
−t2γ2βE3

∓
√

q2(1 + t2γ2) − t2γ2β2E2
3 ,

t2γ2βE4 ∓
√

q2(1 + t2γ2) − t2γ2β2E2
4

]
, (2)

and one has to require that zmin < zmax.1 In (2), the quan-
tity β ≡ tanh(y) is the boost-parameter for a transforma-
tion from the (h1h2) c.m.s. into the (V3V4) (=(qq̄′)) c.m.s.
and t2 ≡ tan2 ϑmin. Further we defined γ2 ≡ 1/(1 − β2).
The quantities E3 ≡

√
q2 + M2

3 and E4 ≡
√

q2 + M2
4 are

the energies of V3 and V4 in the (qq̄′) c.m.s., while M3
and M4 are their masses. q is the magnitude of the three-
momentum of V3 (or V4) in the (V3V4) c.m.s.-system. The
last argument of the min-function which defines ymax in
(2) only plays a role near the threshold. In deriving (2)
we assumed that the quarks have no transverse momen-
tum with respect to the hadrons, but no other kinematical
approximations were made.

1 The upper sign of ∓ in (2) is for zmin, the lower sign for
zmax.

@
@@

q

�
���q0

_ _^ r̂
W�; ; Z

s

	
	

�
� V3

�
�


V4

+

@
@@

	
	

�
�

t
P

avors

�
�




�
��

+

@
@@ �

�
�
�
�












u
	
	
	
	
	

�
�
�
�
�

�
��

Fig. 2. The generic Feynman diagrams for a process qq̄′ →
V3V4 in lowest order of perturbation theory

For large energies of the produced vector bosons, q2 �
max(M2

3 , M2
4 ), the limits of integration (2) take on the

simplified forms

ymax ' min
[
1
2

ln (1/x) , η

]
,

zmax(y) ' −zmin(y) ' tanh(η − |y|). (3)

In this limit, the η-cut is identical to a rapidity-cut Y of
the same magnitude. We choose a cut of the magnitude
η = 1.5, corresponding to a minimum angle of ϑmin =
250. For the relevant process pp → W±Z + X the highest
sensitivity to anomalous couplings is achieved with a cut
of about this magnitude [45].

2.1.2 Vector boson fusion

The O(α4) partonic reaction which is shown in Fig. 1b
contains the vector boson scattering processes V1V2 →
V3V4 as subprocesses. Three types of Feynman diagrams
contribute to a generic process V1V2 → V3V4. They cor-
respond to vector boson exchange, a direct interaction
among the four vector bosons and Higgs boson exchange.
Using the Feynman rules for the GIDS model given in [46]
we wrote the amplitudes as functions of the scalar prod-
ucts of the external momenta and of polarization vectors.
We evaluated them numerically without making further
approximations. In Appendix B we give analytical expres-
sions for the cross sections for W±Z → W±Z, W±γ →
W±Z and W±γ → W±γ in a high energy approximation.
Expressions for the amplitudes of these and other vector
boson scattering processes can be found in [31,46,47].

We calculate the invariant mass distribution of the
cross section for h1h2 → V1V2 → V3V4 in the improved
EVBA according to [33]. The formulas which have been
given there apply if a rapidity cut is used. The correspond-
ing expressions for a pseudorapidity cut are obtained by
replacing zmin(y), zmax(y) and ymax in [33] by the expres-
sions (2). We use the exact vector boson pair luminosities
of [33] if V1V2 consists of two massive vector bosons. If a
photon is involved, the Approximation 2 of [33] with the
photon distribution function of [48] is used.

2.2 Parametrization of anomalous couplings

The model we use for the anomalous couplings was de-
scribed in [42] (GIDS model). In this model, the most
general SU(2)L × U(1)Y -symmetric interaction terms of
dimension six are added to the Lagrangian of the standard
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model. We restrict ourselves to C- and P -conserving inter-
actions which contain no higher derivatives and explicitly
contain vector boson self-interactions. There are three of
those interaction terms which are described by the para-
meters αW , αWΦ and αBΦ

2. They are related to the usual
parameters [37] xγ , yγ and δZ , xZ , yZ , which parametrize
the C- and P -conserving interactions of the γW+W− and
the ZW+W− vertex, respectively, by

δZ =
cW

sW
∆gZ

1 =
αWΦ

sW cW
,

xZ =
cW

sW
(∆κZ − ∆gZ

1 ) = −sW

cW
(αWΦ + αBΦ) = −sW

cW
xγ ,

yZ =
cW

sW
λZ =

cW

sW
αW ,

xγ = ∆κγ = αWΦ + αBΦ,

yγ = λγ = αW . (4)

In (4) we also included the relations to the parameters
∆gZ

1 , ∆κZ , λZ and ∆κγ , λγ of [17]. We use sW ≡ sin(θW )
and cW ≡√1 − s2

W , where θW is the weak mixing angle.
The reduction from the five parameter case of δZ , xZ ,

yZ , xγ and yγ to the three parameter case is manifest
through the relations xZ = −(sW /cW )xγ and yZ =
(cW /sW )yγ which are implicit in (4). The three param-
eter model defined in (4) has already been obtained [42]
in [16,35] from the assumption of a custodial SU(2) sym-
metry. The relation between xγ and xZ in (4), xZ =
−(sW /cW )xγ , is a consequence of the exclusion of intrin-
sic SU(2) violation, i.e., of SU(2) custodial symmetry. The
relation between yγ and yZ in (4) follows from the require-
ment of SU(2)L × U(1)Y symmetry in the quadrupole in-
teractions. In addition to trilinear interactions the three-
parameter dimension-six SU(2)L ×U(1)Y gauge invariant
model describes interactions among four and more vector
bosons. Also these interactions are already contained in an
identical form [42] in the model described in [16,35]. The
only difference [49] of the three-parameter model [16,35]
and the SU(2)L×U(1)Y invariant one lies in non-standard
interactions of the Higgs boson.

We note that there are no non-standard interactions
among three neutral gauge bosons which would obey C-
and P -symmetry, contain no higher derivatives and are
compatible with electromagnetic gauge and Lorentz in-
variance [36].

The Lagrangian of the GIDS model is an effective, un-
renormalizable one and can in general be written as [50]

Leff = L0 +
∑

j

g̃j

Λ
L(5)

j +
∑

j

g̃j

Λ2 L(6)
j + . . . . (5)

In (5), L0 is the Lagrangian of the standard model, the
L(d)

j are interaction terms of dimension d, the g̃j are cou-
pling constants and Λ is the energy scale of new physics.
We assumed the same (gauge) symmetries for the L(d)

j as

for L0. This implies that the L(5)
j term (and all terms with

an odd d) in (5) are absent. If we further assume that the

2 The parameters are called εW , εWΦ and εBΦ in [42]

g̃j are of the same order of magnitude as the standard
model couplings g,g′ and e and compare the Lagrangian
(5) with the one defining the α-parameters [42], we read
off the order of magnitude for the α-parameters,

αW , αWΦ, αBΦ = O
(
M2

W /Λ2) . (6)

Assuming Λ & 2 TeV (and consequently restricting our-
selves to scattering energies up to MV3V4 < 2 TeV), the
order of magnitude for the α-parameters is

αW , αWΦ, αBΦ . O
(
10−3) . (7)

The restrictions derived from partial wave unitarity
applied to vector boson scattering amplitudes are [47]:

∣∣∣∣sαW

M2
W

∣∣∣∣ .
√

12s2
W

α
' 19,

∣∣∣∣sαWΦ

M2
W

∣∣∣∣ . 15.5,∣∣∣∣sαBΦ

M2
W

∣∣∣∣ . 49, (8)

where we have introduced s ≡ M2
V3V4

. For
√

s ≤ 2 TeV
the unitarity bounds (8) are

|αW | ≤ 0.031, |αWΦ| ≤ 0.025, |αBΦ| ≤ 0.079. (9)

These limits are larger than the values in (7) for the
α′s which we expect from the effective Lagrangian ansatz.
Therefore, if the couplings are not larger than expected
from the effective Lagrangian ansatz, unitarity is not vi-
olated for energies

√
s ≤ 2 TeV. In [17,20,25,26] a form

factor assumption is made in order to avoid violation of
unitarity. In our fits we follow the simple prescription to
vary the coupling parameters within their unitarity limits
only. In fact it will turn out that within the 95% CL lim-
its the unitarity limits are never reached. Thus, in order
to derive sensible experimental bounds on the anomalous
couplings, one does not have to use form factors for which
additional (unknown) parameters must be introduced.

If one nevertheless introduces a form factor, the cou-
plings αi which are to be inserted in the expressions for
the cross sections are energy dependent. They are related
to bare (energy independent) coupling constants, α0

i , by

αi =
α0

i(
1 + s

Λ2
FF

)n . (10)

The bare coupling constants are those which appear in
the Lagrangian. A usual choice for the exponent n in (10)
is n = 2. Similar to Λ in (5) ΛFF is an energy scale for
new physics. The unitarity limits for the parameters α0

i
are obtained by inserting (10) into (8). We use n = 2 and
minimize the maximum value for |α0

i | with respect to s.
The minimum occurs at s = Λ2

FF and the unitarity limits
are given by

|α0
W | . 76(M2

W /Λ2
FF ) ' 0.123,

|α0
WΦ| . 62(M2

W /Λ2
FF ) ' 0.100,

|α0
BΦ| . 196(M2

W /Λ2
FF ) ' 0.316 . (11)
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Fig. 3. The cross sections for W ±Z(≡ W+Z +
W −Z), W ±γ, W+W − and W ±W ±(≡ W+W++W −W −) pro-
duction as functions of the invariant mass MV3V4 of the pro-
duced vector boson pair for pp-collisions at

√
s = 14 TeV.

Various values of the anomalous couplings have been chosen.
Separately shown are the contribution from qq̄′-annihilation
and the (summed) contribution from vector boson fusion pro-
cesses. A pseudorapidity cut of η = 1.5 has been applied

The numerical values in (11) are for ΛFF = 2 TeV. At
multi-TeV colliders the cross section for fixed α0

i 6= 0 is
very different from the cross section for fixed αi and the
obtainable bounds on the αi are very much tighter than
those for the α0

i . The distinction between the two models
does however not very much affect the analysis of present
Tevatron data since there the form factor is close to the
value 1 as

√
s can hardly be greater than 0.5 TeV.

2.3 Results

Figure 3 shows the comparison of qq̄′-annihilation and
vector boson fusion in the presence of anomalous cou-
plings. We show the results for the relevant processes of
W±Z and W±γ production and for W+W− production.
In addition, we present a plot for W±W± production.
We sum over the charge conjugated final states, i.e., dis-
cuss the cross sections for W±V ≡ W+V + W−V and
W±W± ≡ W+W+ + W−W− production. We have also
summed over all V1V2 pairs. The mass of the Higgs bo-
son was chosen to be MH = 300 GeV. There is little ef-
fect (less than 15% of change in the contribution from

vector boson fusion) on the results for W±Z and W±γ
production if the mass of the Higgs boson is varied in be-
tween MH = 0.1 TeV and MH = 0.8 TeV. The other
electroweak parameters were chosen as α = 1/128, MZ =
91.19 GeV and MW = 80.33 GeV. We use the Higgs boson
width ΓH for the dominant decay modes into W+W− and
ZZ. For the parton distribution functions we use the set
MRS(R2) [51] which includes the latest HERA data and
uses αs(M2

Z) = 0.120 as input parameter, a value favored
by the LEP 1 data. A contribution from top quarks is ne-
glected. For the scales Q2

i appearing as arguments of the
parton distribution functions we use the quark-quark sub-
energy, Q2

i = sqq. For the elements of the CKM matrix we
take |Vud|2 = |Vcs|2 = 0.95, |Vus|2 = |Vcd|2 = 0.05 and
consequently assume no mixing of the third flavor with
the other two flavors. If no CKM mixing is included at
all none of the differential cross sections changes by more
than 1%.

Figure 3 clearly shows that the contribution from vec-
tor boson scattering is an order of magnitude smaller than
the contribution from qq̄′-annihilation. We checked that
this is true also for ZZ, Zγ and γγ production. The con-
tribution may therefore indeed be neglected. We only vary
one coupling at a time. Only those couplings which lead to
enhanced terms at high energies (i.e. of O(αis) or O(α2

i s
2))

in the qq̄′ cross section are varied. Varying the other cou-
plings leaves the qq̄′ cross sections virtually unchanged.
For W±W± production we vary all couplings. We choose a
single non-zero magnitude for each of the couplings which
is already quite large for the effective Lagrangian expec-
tation, (7), but which is still below the unitarity limit (8).
For αW and αWΦ we take |αi| = 0.01. For αBΦ we take
|αBΦ| = 0.03. For the relevant processes of W±V produc-
tion, we choose a negative and a positive value for the
coupling if there is an enhanced term linear in the cou-
pling.

The main conclusion from Fig. 3 is that vector boson
scattering is only marginally important even if the anoma-
lous couplings are different from zero. When constrain-
ing anomalous couplings using these processes, vector bo-
son scattering might therefore well be omitted. The non-
enhanced terms (αBΦ in W±Z-production, αWΦ and αBΦ

in W±γ-production) are unlikely to lead to any observ-
able effect at the LHC. Figure 3d shows that the effect of
anomalous couplings for like-charge W±-pair production
is not very large.

Figure 4 quantifies our result. It shows the ratio of the
cross sections for pp → W±(γ, Z) → W±Z (W±(γ, Z)
intermediate states ≡ the sum of W±γ and W±Z inter-
mediate states) and for pp → qq̄′ → W±Z as a function of
MV3V4 . The ratio of the integrated cross sections3 is 12%
(15%) for a cut of η = 1.5 (η = 2.5).

We note that a different value of this ratio is obtained
if the EVBA in the leading logarithmic approximation
(LLA) is used instead. In [4,5] the cross sections for pp →

3 For this numerical evaluation we used MH = 0.1 TeV in
order to be able to compare with results in the literature. We
integrated the cross sections between 0.5 TeV < MWZ < 2
TeV
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Fig. 4. The ratio of the cross sections for pp → W ±(Z, γ) →
W ±Z and pp → qq̄′ → W ±Z as a function of the invariant
mass MV3V4 for √

spp = 14 TeV

W±(γ, Z) → W±Z and for pp → qq̄′ → W±Z were cal-
culated and the LLA EVBA was used. Calculating the
ratio of these cross sections, we obtain 57% for Y = 1.5
and 64% for Y = 2.5 for the case of MH ' 0.1 TeV (59%
(Y = 1.5) and 65% (Y = 2.5) for MH = 1 TeV). Likewise,
if we repeat the calculation of [30,31] (we used η = 1.5,
MH = 0.1 TeV and integrated the cross sections in the
region 0.5 TeV < MWZ < 2 TeV), we obtain a value of
52% for the ratio. For more details we refer to [45].

These values of the ratio are thus much higher than
the values obtained with the improved EVBA. The lat-
ter values are however in agreement with values following
from [6], in which a complete (lowest order) calculation of
the processes q1q2 → q′

1q
′
2W

+Z was carried out instead of
an EVBA. Computing the ratio of the cross sections for
pp → q1q2 → q′

1q
′
2W

+Z and pp → qq̄′ → W+Z given in
[6] one obtains 17% (21%) for MH = 0.1 TeV (MH = 1
TeV). In summary, the improved EVBA calculation and
the complete calculation both yield a value for the ratio
which is between 10% and about 20%, while calculations
using the LLA EVBA yield a value which is larger by more
than a factor of 3.

We remark that for MH = 300 GeV even the Higgs
boson peak (which is present only in W+W− and ZZ
production) stays below the rate of qq̄′-annihilation. We fi-
nally note that the like-charge pair production pro-
cesses pp → W±W± + X cannot proceed via qq̄′ anni-
hilation and might thus allow to directly observe vector
boson scattering.

3 Parameter fits for anomalous couplings

In this section we present parameter fits to fictitious stan-
dard model data and derive limits for the anomalous cou-
plings. Refering to the conclusion of Sect. 2, we will take
into account only the contribution from qq̄′ annihilation.
First we consider W±γ and W±Z production separately.
These are the experimentally relevant production processes

[13]. The detection of a W+W− pair is experimentally
plagued by a large background of tt̄ production with the
subsequent decay of a top quark into a W± boson and a
b quark [13]. We use the general parametrization of the
triple gauge boson vertices [36–38] in terms of seven free
parameters, thus allowing for C- and P -violation. Then
we present a fit to combined W±γ and W±Z “data” for
the three parameter gauge invariant model. We take into
account the full correlations among the parameters. Be-
fore we proceed we present the unitarity limits for the set
of couplings which we are using [38,44]. As far as we know,
these limits have never been given before.

3.1 Unitarity limits for δV , xV , yV , zV , z′
1V , z′

2V
and z′

3V

Theoretical bounds on anomalous couplings can be ob-
tained by applying partial wave unitarity to the ampli-
tudes for qq̄′ → V3V4. Inequalities derived from the re-
quirement of partial wave unitarity have been given in [52].
The inequalities have been written in terms of “reduced
amplitudes” for qq̄′ → W±Z and qq̄′ → W±γ scattering.
The reduced amplitudes have been given in terms of the
parameters gV

1 , κV , λV , gV
4 , gV

5 , κ̃V and λ̃V , where V = γ
or Z. By comparison of the Lagrangians of [38] and [52]
we find the following equivalence between this set of pa-
rameters and the one we are using:

gV
1 − 1 =

δV

gSM
V

, λV =
yV

gSM
V

,

κV − 1 =
δV + xV

gSM
V

, gV
4 =

z′
1V

gSM
V

,

gV
5 = − zV

gSM
V

M2
V

M2
W

+ i
z′
3V

gSM
V

(P 2 − M2
W ∗)

M2
W

,

λ̃V = −2
z′
3V

gSM
V

κ̃V = − z′
2V

gSM
V

− z′
3V

gSM
V

(P 2 + M2
W ∗)

M2
W

−i
zV

gSM
V

(P 2 − M2
W ∗)

M2
W

. (12)

In (12), P 2, M2
W ∗ and M2

V are the squared invariant
masses of the W+, the W− and the V , respectively, en-
tering the trilinear vertex and gSM

γ = 1, gSM
Z = (cW /sW ).

Because the two parameter sets are only equivalent up to
possible form factors4, (12) contains the kinematic vari-

4 Form factors can be introduced by adding terms with two
or a larger even number of derivatives on the fields to a La-
grangian with constant couplings. These terms are equal to a
power of a squared invariant mass (or even a product of powers
of several squared invariant masses) times the interaction term
of the original Lagrangian. In order to compare the interac-
tion terms of the Lagrangians of [38] and [52] the terms of one
Lagrangian have to be re-grouped (by using partial integra-
tions and tensor identities). Two derivatives on a field appear
in some of the re-grouped terms. This introduces the P 2, M2

W ∗
and M2

V dependences in (12)
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ables P 2, M2
W ∗ and M2

W . We checked that with the re-
placements (12) the expressions for the amplitudes for
W±γ, W±Z and W+W− production in terms of the two
sets translate in the correct way.

The following table summarizes the symmetry proper-
ties of the parameters under C and P transformations:

δV , xV , yV zV z′
1V z′

2V , z′
3V

C,P 6C,6P (CP ) 6C, P C,6P
If electromagnetic gauge invariance is demanded, the fol-
lowing parameters vanish,

U(1)e.m. → δγ = 0, z′
1γ = 0. (13)

Assuming that only one anomalous coupling at a time
is different from zero we extract the unitarity bounds
shown in Tables 1 and 2 from the bounds on the reduced
amplitudes in [52]. For W±Z production we neglected
terms of O(M2

W /s). For the form factor case we used (10)
with n = 2 and minimized the unitarity bounds with re-
spect to s. However, for z0

γ , z0
Z and (z′

3Z)0 the value of s

at the minimum is greater than Λ2
FF . For these cases we

quote the unitarity limit for s = Λ2
FF . The bounds shown

in Tables 1 and 2 are weaker than those derived from vec-
tor boson scattering because in the latter processes the
amplitude is in general quadratic in the couplings while
for qq̄′ → V3V4 it is at most linear.

3.2 Present direct limits

At present, direct limits on the couplings have been ob-
tained by the CDF and D0 collaborations at Tevatron [53,
54] and by the LEP 2 collaborations [55,56]. Table 3 sum-
marizes the most stringent bounds which were attained at
the Tevatron.

The LEP 2 collaborations recently gave [56] a prelim-
inary limit for αWΦ,

−0.3 < αWΦ < 0.4, 95%CL,

where αBΦ = αW = 0 was assumed. Adopting a two-
parameter model [57] which is equivalent to αWΦ, αBΦ 6= 0
and αW = 0, the following preliminary limits were ob-
tained at LEP 2 [56],

|δZ | < 1.9, −2.5 < xγ < 3.8, 95%CL.

These limits take into account the correlations between
the two parameters. No form factor was used.

The final sensitivity of LEP 2 has been estimated in
[37,58]. For the three parameter gauge invariant model
the following result was obtained for a run at

√
s = 190

GeV with an integrated luminosity of L = 500 pb−1 [37]:

−0.20 < αW < 0.24,

−0.19 < αWΦ < 0.13,

−0.35 < αBΦ < 1.05.

These bounds are at 95% CL and take into account all
correlations.

Fig. 5. The cross sections for a: pp → W ±γ + X and b:
pp → W ±Z + X b as a function of the transverse momentum
pT of a produced vector boson in the standard model and for
various values of the anomalous couplings. The cross sections
have been multiplied by the branching ratios for the decays of
massive vector bosons into two generations of leptons

3.3 Fitting procedure

We performed fits to the MV V and pT distributions of the
cross sections, where pT = q sin θ is the transverse mo-
mentum of a produced vector boson. The pT distribution
was calculated according to

dσ

dpT
(h1h2 → qq̄′ → V3V4, shh)|cut

=
1
pT

xmax∫
xmin

dx
(pT /q)2

zT

min[−(1/2) ln(x),y0(zT )]∫
max[(1/2) ln(x),−y0(zT )]

dy

×
∑
qq̄′

[
fh1

q (
√

xey, Q2
1)f

h2
q̄′ (

√
xe−y, Q2

2) + h1 ↔ h2

]

×
[

dσ

d cos θ
(qq̄′ → V3V4, zT ) +

dσ

d cos θ
(qq̄′ → V3V4,−zT )

]
.

(14)

In (14), zT ≡ √
1 − (pT /q)2 is the magnitude of cos θ for

the given pT and xmin and xmax are determined by

xmin = max
[
(M3 + M4)2/shh, x(p2

T )
]
,

xmax = min
[
1, x(p2

T / sin2 ϑmin), (2 TeV)2/shh

]
. (15)

In (15) we included the upper bound of 2 TeV for
√

s.
y0(zT ) in (14) is determined by the pseudorapidity cut. In
the high-energy limit (q2 � M2

3,4) it is given by

y0(zT ) ' η − tanh−1(zT ). (16)

The function x(q2) in (15) is given by

x(q2) = (17)

2q2 + M2
3 + M2

4 + 2
√

q4 + q2(M2
3 + M2

4 ) + M2
3 M2

4

shh
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Table 1. Unitarity limits for γW+W − couplings without and with a form factor derived from partial wave unitarity for
qq̄′ → W ±γ. K =

√
3sW /(α

√
1 − M2

W /s), ν =
√

s/M2
W + 1

Parameter Unitarity limit
√

s = 2 TeV Parameter Unitarity limit ΛFF = 2 TeV

|δγ | K/(
√

2ν) ' 6.0/
√

s, s � M2
W 3.0 |δ0

γ | 96/(3
√

3ΛFF ) 9.2
|xγ | √

2K/ν ' 12.0/
√

s 6.0 |x0
γ | 192/(3

√
3ΛFF ) 18.5

|yγ | √
2KMW /(

√
sν) ' 0.96/s 0.24 |y0

γ | 3.84/Λ2
FF 0.96

|zγ | √
2K/[ν((s/M2

W ) − 1)] ' 0.077/s3/2 0.0096 |z0
γ | 0.308/Λ3

FF 0.039
|z′

1γ | √
2K/ν ' 12.0/

√
s 6.0 |(z′

1γ)0| 192/(3
√

3ΛFF ) 18.5
|z′

2γ | √
2K/ν ' 12.0/

√
s 6.0 |(z′

2γ)0| 192/(3
√

3ΛFF ) 18.5

Table 2. Unitarity limits for ZW+W − couplings without and with a form factor derived from partial wave unitarity
for qq̄′ → W ±Z. K =

√
3s2

W /(αcW )

Parameter Unitarity limit
√

s = 2 TeV Parameter Unitarity limit ΛFF = 2 TeV

|δZ | (2K/sW )(M2
W /s) ' 1.54/s 0.39 |δ0

Z | 6.16/Λ2
FF 1.54

|xZ | √
2K(cW /sW )(MW /

√
s) ' 12.0/

√
s 6.0 |x0

Z | 192/(3
√

3ΛFF ) 18.5
|yZ | √

2K(cW /sW )(M2
W /s) ' 0.96/s 0.24 |y0

Z | 3.84/Λ2
FF 0.96

|zZ | √
2K(cW /sW )(M3

W /s3/2) ' 0.077/s3/2 0.0096 |z0
Z | 0.308/Λ3

FF 0.039
|z′

1Z | (2K/sW )(M2
W /s) ' 1.54/s 0.39 |(z′

1Z)0| 6.16/Λ2
FF 1.54

|z′
2Z | √

2K(cW /sW )(MW /
√

s) ' 12.0/
√

s 6.0 |(z′
2Z)0| 192/(3

√
3ΛFF ) 18.5

|z′
3Z | K/(

√
2sW )(M3

W /s3/2) ' 0.044/s3/2 0.0055 |(z′
3Z)0| 0.176/Λ3

FF 0.022

Table 3. Results from [53,54] for the 95% CL limits on anomalous couplings obtained from two-parameter fits to data
of diboson production in pp̄ collisions at

√
s = 1.8 TeV. The bounds take into account possible correlations between the

two fitted parameters. The C- or P -violating couplings were assumed to be zero. The value of ΛFF which was used in
the fits is indicated in the bottom row

diboson pair Wγ W+W −/WZ W+W − W+W −/WZ
assumptions none δZ = 0, xZ = cW

sW
xγ , yZ = cW

sW
yγ yγ = yZ = 0, xγ = 0

−1.4 < xγ < 1.4 −0.4 < xγ < 0.6 −0.9 < xγ < 1.0 −2.5 < δZ < 2.7results −0.5 < yγ < 0.5 −0.4 < yγ < 0.4 −0.7 < yγ < 0.7 −4 < xZ < 4

ΛFF /TeV 1.5 2 2 1

and ϑmin in (15) is determined by the relation tanh(η) =
cos ϑmin. q is the variable defined in (2).

We assumed that the W±, Z particles are identified by
their decays into two generations of leptons each. We used
the following branching ratios,

W±→l±ν 10.8% Z→l+l− 3.37%

We used no other cut than η = 1.5 on the produced
bosons. Figures 5a and b show the cross sections for pp →
W±γ + X and pp → W±Z + X, respectively, multiplied
by the branching ratios as a function of pT in the standard
model and for various values of the anomalous couplings.
No form factor was used.

To estimate the number of events at the LHC we as-
sume an integrated luminosity of L = 105 pb−1. We ar-
range fictitious standard model data into bins. For the
MV V distribution for pp → W±Z + X we find that there
is less than 1 event for MV V > 2 TeV and ' 21 events in
the interval 1 TeV < MV V < 2 TeV. We choose this inter-
val to be the first bin. The other bins and numbers of SM

events for W±Z and W±γ production are shown in Table
4. We also show the numbers of events for ZZ, Zγ and
γγ production5. The accuracy of the numbers due to nu-
merical integration is 1%. We proceed to arrange the data
for the pT distributions into bins. Since pT ' MV V /2 for
scattering at right angles and large invariant masses we
choose the limits for the pT bins equal to half the limits
of the MV V bins. In addition we define an eighth bin. The
results are also shown in Table 4.

To calculate the non-standard effects we wrote the
number of events in each bin as a power series in the
anomalous couplings,

N(α′s) = NSM +
∑

i

αiNi +
∑
i,j

αiαjNij , (18)

where the αi are the anomalous couplings. Table 5 shows
the coefficients for the C- and P -conserving couplings and

5 We neglected potential contributions from gluon fusion [59]
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Table 4. The numbers of standard events in 7 bins over the invariant mass MV V and in 8 bins
over the transverse momentum pT for the processes pp → V3V4 + X at

√
s = 14 TeV with a cut

|η| < 1.5 on the pseudorapidity of the produced vector bosons and the requirement
√

s < 2 TeV
for the pT distributions. An integrated luminosity of L = 105 pb−1 has been assumed. For massive
vector bosons a decay into two generations of leptons was assumed. All results were obtained in the
Born approximation.

Bin Nr. 1 2 3 4 5 6 7
MV V [TeV] 1-2 0.8-1 0.7-0.8 0.6-0.7 0.5-0.6 0.4-0.5 0.3-0.4

W ±γ 95 126 134 247 499 1154 3320
NSM W ±Z 21 29 31 59 121 285 823

= ZZ 3.3 4.7 5.2 9.8 20.4 49 147
L · Br · σ Zγ 33 45 48 89 182 426 1247

γγ 214 287 304 556 1110 2518 6965
Bin Nr. 1 2 3 4 5 6 7 8

pT [TeV] 0.5-1 0.4-0.5 0.35-0.4 0.3-0.35 0.25-0.3 0.2-0.25 0.15-0.2 0.1-0.15
W ±γ 32 51 55 103 208 473 1275 4603
W ±Z 7.6 12 13 24 48 108 275 821

NSM ZZ 1.6 2.5 2.7 4.9 9.8 21.5 53 151
Zγ 17 25 27 50 101 225 595 2048
γγ 116 172 187 345 698 1600 4460 17600

Table 5. The coefficients Ni and Nij , defined in (18), for the numbers of produced W ±γ and W ±Z
pairs in a bin with 0.4 TeV < pT < 1 TeV for the rescaled coupling parameters x̂γ ≡ xγ · 10,
ŷγ ≡ yγ · 100, ẑγ ≡ zγ · 103 and δ̂Z ≡ δZ · 100, x̂Z ≡ xZ · 10, ŷZ ≡ yZ · 100. The numbers of standard
events are also shown. Sample usage: For yγ = 2·10−3 ⇔ ŷγ = 0.2 and all other anomalous couplings
equal to zero there are 82+233 · (0.2)2 ' 91 W ±γ events in the bin, corresponding to one standard
deviation from the standard model

SM x̂γ ŷγ ẑγ x̂2
γ ŷ2

γ ẑ2
γ x̂γ ŷγ x̂γ ẑγ ŷγ ẑγ

W ±γ
82 −2.5 0 −6.1 63.5 233 497 31.8 0.1 0.01

SM δ̂Z x̂Z ŷZ δ̂2
Z x̂2

Z ŷ2
Z δ̂Z x̂Z δ̂Z ŷZ x̂Z ŷZ

W ±Z
20 −12.7 −3.0 −0.68 6.3 4.1 15.3 2.3 0.57 2.0

for zγ in a bin of the pT distribution comprising 0.4 TeV
< pT < 1 TeV.

In each bin we calculate

∆χ2 = −2 ln
( L

L0

)
, (19)

where L is the likelihood function for the data in this bin,
assuming that a theory with particular (non-zero) values
for the anomalous couplings is the correct theory, and L0
is the same function assuming that the standard model
is correct. ∆χ2 is a measure of the probability that this
particular model can still describe the (standard) data. If
the number of events (in the bin) is greater than 50, we
calculate L according to a Poisson distribution of the total
number of events,

L = pN =
< N >N

N !
e−<N>. (20)

In (20), < N >≡ N(α′s) is the number of events predicted
by the particular non-standard theory and N ≡ NSM is
the number of standard events (=the number of “mea-
sured” events). If the number of events is smaller than 50

we generate the N events in the bin, i.e. we calculate the
phase space points Ωi, i = 1 . . . N , at which the standard
events would be located in the bin. Ω represents MV V

or pT for the two distributions, respectively. We then use
the method of extended maximum likelihood (EML) to
calculate L6. The likelihood function of the EML is given
by

LEML = pN

N∏
i

p(Ωi, ~α), (21)

with pN from (20) and p(Ωi, ~α) is the probability of finding
the ith event at the phase space point Ωi, assuming that
the theory with the parameters ~α is correct. p(Ωi, ~α) is
given in terms of the differential cross section by

p(Ωi, ~α) =
1
σ

dσ

dΩ
(Ωi), with σ =

∫
bin

dσ

dΩ
dΩ, (22)

where σ and dσ/dΩ are evaluated in the non-standard
theory.

6 We thank M. Pohl for discussions on this point
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Fig. 6. The projections of the ∆χ2 = 4 and ∆χ2 = 1 con-
fidence regions on the xγ , yγ and zγ parameter planes from a
three parameter fit of the pT distribution of pp → W ±γ +X at√

s = 14 TeV with a cut of η = 1.5. An integrated luminosity
of L = 105pb−1 and a leptonic decay of the W ± boson into
two generations of fermions was assumed. All other parameters
were assumed to be equal to zero

3.4 Results

Figure 6 shows the projections of the ∆χ2 = 1 and ∆χ2 =
4 confidence regions on the xγ = 0, yγ = 0 and zγ = 0 pa-
rameter planes as the result of a three parameter fit to
the pT distribution of pp → W±γ + X. The parameters
z′
1γ , z′

2γ and z′
3γ were set equal to zero. As the parameters

are uncorrelated, the projections are equal to the sections
of the confidence regions with the planes. If the MV V dis-
tribution is used instead, the regions expand by a factor of
1.1 to 1.15 in each dimension. If only the total number of
events in each bin is subjected to the fit (instead of using
the EML method), the regions expand by a factor of about
1.2 in each dimension. If a four parameter fit to xγ , yγ , zγ

and z′
2γ is performed instead, the projections and sections

stay the same as in Fig. 6. The parameter z′
3γ does not

contribute to W±γ production. We assumed δγ = z′
1γ = 0

because of electromagnetic gauge invariance.
Figure 7 shows the projections of the confidence re-

gions on the parameter planes δZ = 0, xZ = 0 and yZ = 0
and the sections of the regions with the planes as the
result of a three parameter fit to the pT distribution of
pp → W±Z + X. The parameters zZ , z′

1Z , z′
2Z and z′

3Z
were set equal to zero. The figure displays the correla-
tions among the parameters. As a result of the correla-

Fig. 7. The projections of the ∆χ2 = 4 and ∆χ2 = 1 confi-
dence regions on the δZ , xZ and yZ parameter planes and the
sections of the regions with these planes from a three parame-
ter fit of the pT distribution of pp → W ±Z+X at

√
s = 14 TeV

with a cut of η = 1.5. An integrated luminosity of L = 105pb−1

and a leptonic decay of the W ±, Z bosons into two generations
of fermions was assumed. All other parameters were assumed
to be equal to zero. The sections are drawn in the same way
as the projections. They can be distinguished from the projec-
tions as they always lie inside them

tions the sections are smaller than the projections. A four
parameter fit which includes zZ yields identical results. If
a seven parameter fit (including also z′

1Z , z′
2Z and z′

3Z) is
performed, the projected confidence region expands by no
more than 4% in any direction except for the positive δZ

direction for χ2 = 1 where it expands by ' 30%.
Figure 8 shows the projections and sections on the

αW = 0, αWΦ = 0 and αBΦ = 0 planes from a simul-
taneous fit of the pT distributions of pp → W±Z + X
and pp → W±γ + X to the three parameter gauge in-
variant model. The unitarity limits for the parameters are
also shown. The confidence regions lie inside the unitarity
limits.

The use of different parton distribution functions leads
to small theoretical uncertainties (< 1%) in the confidence
regions. These uncertainties could be reduced by subject-
ing ratios of cross sections, e.g. σ(W±V )/σ(γγ), to the fit.
Due to the additional statistical error induced by the ref-
erence cross section (i.e. σ(γγ) in our example) the confi-
dence regions derived from the ratios are, however, several
tens of percent wider than those derived from the absolute
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Fig. 8. The projections of the ∆χ2 = 4 and ∆χ2 = 1 con-
fidence regions on the αW , αWΦ and αBΦ parameter planes
and the sections of the regions with these planes from a si-
multaneous fit of the pT distributions of pp → W ±Z + X and
pp → W ±γ + X to the three parameter gauge invariant model
for

√
s = 14 TeV with a cut of η = 1.5. The unitarity limits

are also shown. An integrated luminosity of L = 105pb−1 and
a leptonic decay of the W ±, Z bosons into two generations of
fermions was assumed. All other parameters were assumed to
be equal to zero. The sections are drawn in the same way as the
projections. They can be distinguished from the projections as
they always lie inside them

values of the cross sections. We do not use ratios for our
fits.

We repeat our analyses using a form factor. We project
the confidence regions on the parameter axes. This results
in 95% (for χ2 = 4) and 68% (χ2 = 1) confidence limits
for the parameters. Table 6 summarizes our results. If we
repeat the fits for η = 3 the bounds are only slightly af-
fected: the differences between the maximal and minimal
values of the couplings change by at most 20% compared
to Table 6. In general the differences decrease.

The 95% confidence limits which we obtain for the
alternative set of parameters ∆gZ

1 , ∆κZ and λZ of [17]
(instead of δZ , xZ and yZ) are:

−0.0028<∆gZ
1 < 0.0080,

−0.0052<∆gZ,0
1 < 0.024,

−0.062<∆κZ < 0.044,

−0.13<∆κ0
Z < 0.062,

−0.0041<λZ < 0.0041,

−0.0103<λ0
Z < 0.0104. (23)

We compare our results with previous investigations.
Sensitivity limits achievable at the LHC were previously
presented in [10,23–26]. Fits to the pT distribution of fic-
titious data for pp → W+Z + X at

√
s = 14 TeV were

performed in [25]. The 95% CL limits presented there, us-
ing a form factor with ΛFF = 3 TeV and n = 2 and based
on the Born level prediction were

−0.0048<∆gZ,0
1 < 0.0164,

−0.120<∆κ0
Z < 0.092,

−0.0082<λ0
Z < 0.0084.

If we repeat our three-parameter fit (23) with ΛFF = 3
TeV we obtain a similar result, namely7

−0.0039<∆gZ,0
1 < 0.0140,

−0.090<∆κ0
Z < 0.053,

−0.0067<λ0
Z < 0.0068.

An SSC analysis using a form factor for pp → W+γ+X
can be found in [23]. If we repeat our analysis with the
parameters used in [23] (

√
s = 40 TeV, W+ decays to

only one lepton family, L = 104 pb−1 and using only the
information from the total number of events in each bin)
and use a cut of η = 2.5 we obtain −0.17 < ∆κ0

γ < 0.21
and −0.021 < λ0

γ < 0.020 at 95% CL8. These bounds are
tighter by a factor of 1.5 to 2 than the ones obtained in
[23].

In [24], an LHC bound on xγ was derived, assuming
yγ = 0. This bound was derived from the O(αs) prediction
for the cross section, but from Table IV of [24] we deduce
that the 1σ bound which would be obtained from the Born
approximation is |xγ | < 0.069 (we do not use a form factor
for this comparison). This bound is wider by a factor of
in between two and three than our bound. This can be
explained by the fact that in [24] the assumed luminosity
was only L = 3 · 104 pb−1, only W+γ production was
considered, the fitting procedure was simpler (only one
bin was taken) and different cuts were used. Including the
O(αs) corrections reduces the sensitivity to xγ by about
a factor of two [23,24].

The limits which were derived in [10] are much larger
than ours because the discovery criterion employed there
is much stronger than ours. We note that the chiral La-
grangian parameters xL

9 and xR
9 used in [10] are identical

to αWΦ and αBΦ, respectively10. The explicit connection

7 Different cuts were used in [25]. In particular, a pseudora-
pidity cut of η = 3 was applied on the decay products of the
vector bosons. If we repeat our analysis for η = 3 and include,
as in [25], only W+Z production our limits change by less than
3%

8 We required pT > 200 GeV
9 We assumed a quadratic dependence of the number of pre-

dicted non-standard events on this coupling
10 This is true as far as only the trilinear vector couplings are
concerned
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Table 6. The projections of the ∆χ2 = 1 (68% CL) and ∆χ2 = 4 (95% CL) confidence regions on the parameter axes as
the results of a seven parameter fit of the pT distribution of pp → W ±Z + X to δZ , xZ , yZ , zZ , z′

1Z , z′
2Z and z′

3Z , a four
parameter fit of the pT distribution of pp → W ±γ + X to xγ , yγ , zγ and z′

2γ and a three parameter fit of the combined
pT distributions of pp → W ±Z + X and pp → W ±γ + X to αW , αWΦ and αBΦ. The form factor results are for ΛFF = 2
TeV and n = 2

no form factor with form factor

68% CL 95% CL 68% CL 95% CLparameter
min max min max

parameter
min max min max

δZ · 100 −0.24 0.87 −0.51 1.48 δ0
Z · 100 −0.49 3.40 −0.99 4.41

xZ · 10 −0.68 0.38 −1.26 0.82 x0
Z · 10 −1.77 0.64 −2.76 1.29

yZ · 100 −0.46 0.46 −0.75 0.76 y0
Z · 100 −1.44 1.43 −1.93 1.94

zZ · 103 −0.26 0.26 −0.45 0.45 z0
Z · 103 −0.85 0.84 −1.30 1.29

z′
1Z · 100 −0.74 0.74 −1.21 1.21 (z′

1Z)0 · 100 −2.8 2.8 −3.1 3.1

z′
2Z · 10 −1.35 1.35 −1.79 1.79 (z′

2Z)0 · 10 −3.0 3.0 −3.4 3.4

z′
3Z · 104 −1.47 1.47 −2.55 2.55 (z′

3Z)0 · 104 −4.9 4.9 −7.4 7.4

xγ · 10 −0.23 0.33 −0.37 0.49 x0
γ · 10 −0.31 0.56 −0.49 0.77

yγ · 100 −0.131 0.131 −0.22 0.22 y0
γ · 100 −0.35 0.34 −0.52 0.50

zγ · 103 −0.075 0.081 −0.129 0.135 z0
γ · 103 −0.23 0.25 −0.37 0.39

z′
2γ · 10 −0.30 0.30 −0.44 0.44 (z′

2γ)0 · 10 −0.45 0.45 −0.63 0.63

αW · 100 −0.125 0.119 −0.21 0.20 α0
W · 100 −0.34 0.31 −0.51 0.47

αWΦ · 100 −0.082 0.136 −0.175 0.26 α0
WΦ · 100 −0.145 0.22 −0.29 0.42

αBΦ · 10 −0.22 0.32 −0.36 0.48 α0
BΦ · 10 −0.29 0.53 −0.47 0.74

is given by

α

8πs2
W

xL
9 = −αWΦ,

α

8πs2
W

xR
9 = −αBΦ. (24)

Conclusion

We showed that the rate for vector boson fusion produc-
tion of vector boson pairs at the LHC is at the order of
10% to 20% of quark antiquark annihilation production
and might thus be neglected in an estimate of the pair
production cross sections. This result was obtained by ap-
plying an improved formulation of the effective vector bo-
son approximation (EVBA). It agrees with the result of
a calculation in which the complete set of diagrams was
evaluated instead of performing an EVBA. Previous cal-
culations in which the EVBA in leading logarithmic ap-
proximation was used overestimate the contribution from
vector boson fusion by a factor of 3.

We derived confidence intervals for the full set of anoma-
lous W+W−γ and W+W−Z couplings, including C- and
P -violating couplings, from fits to the standard W±γ and
W±Z production rates expected for the LHC. In addi-
tion we derived confidence intervals for a three parameter
SU(2)L × U(1)Y gauge invariant dimension-six extension
of the standard model. We performed multi-parameter fits
in which the full number of anomalous couplings was var-
ied. Our limits thus take into account all possible correla-
tions among the effects of the various possible couplings.

We derived limits with and without making a form factor
assumption. We compare the limits with the unitarity lim-
its for the production of vector boson pairs with invariant
masses smaller than

√
s = 2 TeV. It turns out that all 95%

confidence limits lie inside the unitarity limits whether a
form factor is used or not. It is therefore not necessary to
use a form factor in order to avoid violation of unitarity.
The limits which we obtain without using a form factor
are a factor of 10 (for xγ or αBΦ) and 100 (for (δZ , yγ) or
(αWΦ, αW )) stronger than the present experimental limits
or limits which can be attained at LEP 2.

Adopting an effective Lagrangian approach, together
with an assumption about the energy scale at which new
physics occurs, provides us with an order of magnitude
estimate for the parameters αW , αWΦ and αBΦ. We find
that for αW and αWΦ, the limits which can be obtained
at the LHC are of the same order of magnitude as this
estimate. It might thus be possible to observe non-zero
values of these coupling parameters, should they exist, at
the LHC.

In appendices we give analytical expressions for cross
sections for vector boson pair production with anomalous
couplings for qq̄′ annihilation and vector boson fusion. Our
expressions manifestly show the effects of the couplings at
large scattering energies.
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A Cross-sections for qq̄′-annihilation

The standard model differential cross sections to O(α2)
for qq̄′ → W±Z, qq̄′ → W±γ, qq̄ → W+W− and qq̄ →
ZZ have been first given in [43]11. In a form in which
good high energy behavior is manifest and including the
αW -interaction, all cross sections for qq̄′ → V3V4 can be
found in [30]. For arbitrary vector boson self-interactions
all cross sections and helicity amplitudes have been re-
cently given in [44].

We give here the formulas for the differential cross sec-
tions for the qq̄′ processes which receive contributions from
anomalous vector boson self-interactions, qq̄′ → W±Z, qq̄′
→ W±γ and qq̄ → W+W−, in a form in which the high
energy behavior is manifest. As in [30], we have explicitly
carried out the high energy cancellations among different
diagrams, also (as far as possible) for the non-standard
terms. We use the general C- and P -conserving vector bo-
son self-interactions compatible with Lorentz-invariance
and electromagnetic gauge invariance in terms of the pa-
rameters xγ , yγ , δZ , xZ and yZ . In addition, we include the
contributions from zγ and z′

2γ
12 for W±γ production and

the contributions from zZ , z′
1Z , z′

2Z and z′
3Z for W±Z pro-

duction. The differential cross sections for qq̄ → ZZ, γZ
and γγ can be found in [30].

For qq̄′ → W±V , V = γ, Z, the cross sections contain
an overall factor of |Vqq̄′ |2, where Vqq̄′ is the element of the
CKM matrix for the mixing of the quarks q and q′. For
qq̄ → W+W−, the quarks have to be of the same flavor.
We give the cross sections averaged over colors and spins
of the initial quarks and summed over the helicities of the
final state vector bosons. The cross sections given here
agree with the expressions given in [43], [30]13 and [44].

We denote the left- and right-handed couplings of the
Z-boson to the quarks by

Lu = 1 − 4
3
s2

W , Ru = −4
3
s2

W (25)

Ld = −1 +
2
3
s2

W , Rd =
2
3
s2

W . (26)

We also use the symbols

τu
3 = 1, τd

3 = −1; Qu =
2
3
, Qd = −1

3
. (27)

The Mandelstam variable t will be defined below for each
process and u is defined by s + t + u = M2

3 + M2
4 . The

scattering angle θ is the angle between the three-momenta
of the two particles which define t in (29). We further use

11 Also the xγ-terms for the W ±γ production cross section
have been given there
12 The parameter z′

3γ does not contribute
13 After correction of misprints

the variables

β ≡
√

1 − 2(M2
3 + M2

4 )
s

+
(M2

3 − M2
4 )2

s2 ,

and η, where η = ∓1 for W±V4 production. We treat the
processes qq̄′ → W±Z and qq̄′ → W±γ together because
similar functions are involved.

The differential cross sections are given by:

qq̄′ → W±V4

1. qq̄′ → W±γ

dσ

d cos θ

=
πα2β

24ss4
W

|Vqq̄′ |2
{

2s2
W

(
1

1 + u/t
− 1

3

)2

×
(

s2 + M4
W

tu
− 2
)

+xγ
s2

W

s − M2
W

(
4tu

s − M2
W

+
2
3
(u + 2t)

)

+ηs2
W

s

M2
W

zγ

(
1
3

− cos θ

)(
1 +

M2
W

s

)

+
s2

W

4
z2
γ

(
s(t2 + u2)

M6
W

+
4tu

M4
W

)

+η
s2

W

2
β cos θ

s2

M4
W

zγ(xγ + yγ)

+
1
2

(
ssW

s − M2
W

)2 [
y2

γAy2(0) + 2xγyγAxy(0)

+
(
x2

γ + (z′
2γ)2

)
Ax2(0)

]}
, (28)

where we have defined t by

t =
{

(pu − pW+)2
(pū − pW −)2 , (29)

for the two charge conjugated processes, respectively. In
(29), pi denotes the four-momentum of the particle i.
2. qq̄′ → W±Z

dσ

d cos θ

=
πα2β

24ss4
W

|Vqq̄′ |2
{

1
(s − M2

W )2

[
(9 − 8s2

W )
2

×(tu − M2
W M2

Z) + (4s2
W − 3)s(M2

W + M2
Z)

]

− 2
s − M2

W

[
tu − M2

W M2
Z − s(M2

W + M2
Z)
]

×
(

Ld

t
− Lu

u

)
+

(tu − M2
W M2

Z)
2c2

W

×
(

L2
d

t2
+

L2
u

u2

)
+

s(M2
W + M2

Z)
c2
W

LdLu

tu
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−sW

cW
(δZWδ + xZWx + yZWy)

+
1
2

(
ssW

s − M2
W

)2 [
δ2
ZA0 + y2

ZAy2(M2
Z)

+x2
ZAx2(M2

Z) + 2δZxZAx + 2δZyZAy

+2xZyZAxy(M2
Z)
]

+
s2

W

2
s

s − M2
W

sβ2

M2
W

zZ

×
[
η

(
s3

(s − M2
W )tu2sW cW

{
4β cos θc2

W

M2
Z

s

−1
3
s2

W sin2 θ

[
1 − M2

W − 2M2
Z

s

+
M4

Z − 2M2
W M2

Z − M4
W

s2 − M2
W (M4

Z − M4
W )

s3

]

−β cos θ sin2 θc2
W

[
M2

W + M2
Z

M2
W

+
M2

Z

s

(2M2
W − M2

Z)
M2

W

+
M2

W (M2
Z − M2

W )
s2

]}

+
sβ cos θ

s − M2
W

s

M2
W

(2δZ + xZ + yZ) +
2sW sM2

Z

3cW tu

)

+
s

s − M2
W

sβ2

4M2
W

{( s

M2
W

− 2
)
(1 + cos2 θ) + 4

}
zZ

]

+
s2

W

8

(
s

s − M2
W

)2
[
(z′

3Z)2
4s3β4

M4
W M2

Z

(1 + cos2 θ)

+(z′
1Z)2

β2

M2
W M2

Z

{[
(s − M2

W − M2
Z)2 + sM2

Z − M4
Z

]

× sin2 θ + 2sM2
Z

}
+ (z′

2Z)2
1

M2
W

{
s − 2M2

Z

+β2 cos2 θ(s − 2M2
W ) +

M4
Z

s
− 3

M4
W

s

+10
M2

W M2
Z

s
+ 2

M2
W

s2 (M2
W − M2

Z)2
}

+z′
1Zz′

2Zη cos θ
4β

M2
W

(s − M2
W − M2

Z)

−z′
2Zz′

3Z

8s

M2
W

β2(1 + cos2 θ)

]}
, (30)

with

t =
{

(pu − pW+)2
(pū − pW −)2 . (31)

The invariant functions for qq̄′ → W±V4 for the terms
linear in the anomalous couplings are given by

Wδ=
1

(s − M2
W )2

[
(tu − M2

W M2
Z)
(

s

M2
W

c2
W − 9c2

W − 1
)

+2s(M2
W + M2

Z)
(

s

M2
W

c2
W + 3c2

W − 1
)]

+
2

s − M2
W

(
Ld

t
− Lu

u

)
(
tu − M2

W M2
Z − s(M2

W + M2
Z)
)
,

Wx=
1

(s − M2
W )2

×
[
s(s + 3M2

W − M2
Z) − (tu − M2

W M2
Z)(1 + 4c2

W )
]

+
1

s − M2
W

(
Ld

t
− Lu

u

)
(tu − M2

W M2
Z − sM2

Z),

Wy=
2s

(s − M2
W )2

(s + 3M2
W − M2

Z)

− 2s

s − M2
W

(
Ld

t
− Lu

u

)
M2

Z , (32)

and the functions for the terms quadratic in the couplings
are given by

A0=
(

tu

M2
W M2

Z

− 1
)(

β2 +
12M2

W M2
Z

s2

)

+
2s(M2

W + M2
Z)

M2
W M2

Z

β2,

Ax=
s

M2
W

β2 − M2
Z

s

(
tu

M2
W M2

Z

− 1
)

× (s − M2
Z − 5M2

W )
s

,

Ay=2
s

M2
W

β2,

Ax2(M2
4 )=

s

2M2
W

β2 − (tu − M2
W M2

4 )
sM2

W

× (s − 2M2
W − M2

4 )
s

,

Axy(M2
4 )=

s

2M2
W

β2 +
(tu − M2

W M2
4 )

sM2
W

,

Ay2(M2
4 )=

(tu − M2
W M2

4 )
M4

W

(2s − M2
W − M2

4 )
s

+
s(M2

W + M2
4 )

2M4
W

β2. (33)

qq̄ → W+W−

dσ

d cos θ
=

πα2β

24s4
W s

{
(tu − M4

W )
s2

×
[
3 − (s − 6M2

W )
(s − M2

Z)

(
Lq

τ q
3

)
1

c2
W

+
(

s

s − M2
Z

)2(
β2 +

12M4
W

s2

)(
L2

q + R2
q

4c2
W

)]

− 4M2
Z

s − M2
Z

(
Lq

τ q
3

)
+

sβ2M2
Z

(s − M2
Z)2

(L2
q + R2

q)
c2
W

+2
(

1 +
M2

Z

s − M2
Z

(
Lq

τ q
3

))

×
(

tu − M4
W

st
− 2

M2
W

t

)
+

tu − M4
W

t2

−sW

cW
(ZδδZ + ZxxZ + ZyyZ)

−s2
W (Γxxγ + Γyyγ)

+
1
4

s2
W

c2
W

(
s

s − M2
Z

)2
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×(L2
q + R2

q)
[
δ2
ZB0 + x2

ZBx2 + y2
ZBy2

+2δZxZBx + 2δZyZBy + 2xZyZBxy

]
+s2

W

sW

cW

s

s − M2
Z

(Lq + Rq)Qq

×
[
xZxγBx2 + yZyγBy2 + δZxγBx + δZyγBy

+(xZyγ + xγyZ)Bxy

]

+2s4
W Q2

q

[
x2

γBx2 + y2
γBy2 + 2xγyγBxy

]}
, (34)

with

t =
{

(pu − pW+)2
(pd̄ − pW+)2 . (35)

The invariant functions for qq̄ → W+W− for the terms
linear in the anomalous couplings are given by

Zδ=
s

s − M2
Z

[
M2

W

s

(
tu

M4
W

− 1
)(

1 − 6
M2

W

s
− 2

M2
W

t

)

+4
(

1 +
M2

W

t

)](
Lq

τ q
3

)

−1
2

(
s

s − M2
Z

)2

B0
M2

Z

s
(L2

q + R2
q),

Zx=
s

s − M2
Z

[
M2

W

s

(
tu

M4
W

− 1
)

+ 2
(

1 +
M2

W

t

)]

×
(

Lq

τ q
3

)
− 1

2

(
s

s − M2
Z

)2

Bx
M2

Z

s
(L2

q + R2
q),

Zy=2
(

1 +
M2

W

t

)
s

s − M2
Z

(
Lq

τ q
3

)

−1
2

(
s

s − M2
Z

)2

By
M2

Z

s
(L2

q + R2
q),

Γx=
M2

Z

s − M2
Z

|Qq|
[(

tu

M4
W

− 1
)

(1 − 2s2
W )

+
s

M2
W

(2 − 4s2
W ) + 4

]

+4s2
W

M2
Z

s − M2
Z

BxQ2
q + 4

M2
W

t
|Qq|,

Γy=
2

c2
W

s

s − M2
Z

|Qq|
[
1 − 2s2

W + 2
M2

W

s

]

+4s2
W

M2
Z

s − M2
Z

ByQ2
q + 4

M2
W

t
|Qq|, (36)

and the functions for the terms quadratic in the couplings
are given by

B0=
(

tu

M4
W

− 1
)(

1 − 4
M2

W

s
+ 12

M4
W

s2

)
+ 4

s

M2
W

β2,

Bx=
(

tu

M4
W

− 1
)(

1 − 2
M2

W

s

)
+ 2

s

M2
W

β2,

By=2
s

M2
W

β2,

Bx2=
(

tu

M4
W

− 1
)(

1 − 2
M2

W

s

)
+

s

M2
W

β2,

Bxy=−2
M2

W

s

(
tu

M4
W

− 1
)

+
s

M2
W

β2,

By2=2
(

tu

M4
W

− 1
)(

1 − M2
W

s

)
+

s

M2
W

β2. (37)

Table 7 shows the behavior for s � M2
W for the helicity

amplitudes for qq̄′ → W±V . We note that the terms which
are proportional to cos θ give no contribution to the pT

distribution (14) and the MV V distribution (1).

B Cross-sections for W ±V2 → W ±V4

scattering, V2,4 = γ, Z

We give expressions for cross sections for V1V2 → V3V4 in
a high-energy approximation (to be described below). We
restrict ourselves to the relevant processes of WZ and Wγ
production (in the following we simply write W instead of
W±). Thus, we only give the cross sections for WZ →
WZ, Wγ → WZ, WZ → Wγ and Wγ → Wγ. Helicity
amplitudes for processes V1V2 → V3V4 in the high-energy
limit of the GIDS model can be found in [31,46,47]. They
have been obtained from the exact Born-level amplitudes
by an asymptotic expansion for s � M2

W , where s is the
scattering energy squared. The expansion has been carried
out at a fixed scattering angle θ. Therefore, also |M2

W /t|
and |M2

W /u| have to be small parameters. We note that
for scattering energies s > 0.8 TeV the parameters |M2

W /t|
and |M2

W /u| are smaller than 0.2 for all scattering angles
if a pseudorapidity cut of η ≤ 1.5 is applied.

Since we assume that the couplings are small, αi =
O(M2

W /Λ2), we only keep those anomalous terms in which
each power of an anomalous coupling is enhanced by a fac-
tor of s/4M2

W . For this purpose we define the parameters

ai ≡ s

4M2
W

αi. (38)

The assumption αi = O(M2
W /Λ2) is equivalent to assum-

ing ai = O(1) or smaller (since s ≤ Λ2). In addition to
the non-standard terms, we include the leading standard
terms, O(s/4M2

W )0. We assume that the Higgs boson mass
is small against the scattering energy, M2

H � s.
Since the standard contributions to the amplitudes

M++++ and M+−−+ are very large (they diverge as cos θ
→ −1), we also include the terms which arise when the
sum of the leading standard contribution and the sublead-
ing (i.e. first order non-leading) non-standard contribution
to these amplitudes is squared, i.e. 2MstandardMsubleading.
These terms are necessary to describe the effects linear in
the αi for the cross sections σTT and σTT defined in (39).
The reason for this is that corresponding leading terms
are absent.

If the couplings are larger, ai > 1, also other sublead-
ing terms might give sizeable contributions. Of the possi-
ble non-standard subleading terms those which are quadri-
linear in the couplings will be the largest ones. We include
also these terms. They only appear in amplitudes with an
odd number of longitudinally polarized vector bosons.
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Table 7. The leading behavior for s � M2
W of the helicity summed squared amplitude |M|2 for qq̄′ → W ±Z and

qq̄′ → W ±γ. Shown is the leading behavior of the different terms in |M|2 proportional to the different combinations
of the anomalous couplings. If a term has a different sign for W+(η = −1) and W −(η = 1) production this is
indicated by the factor η. The terms can be even or odd in cos θ. If they are odd this is indicated by the factor
cos θ. A slash indicates that a term is not present. Sample usage: |M|2 = O(s0) + δZO(s/M2

W ) + δ2
ZO(s2/M4

W )
for qq̄′ → W ±Z if only δZ is non-zero

Leading Terms in |M|2, qq̄′ → W ±Z Leading Terms in |M|2, qq̄′ → W ±γ

SM δZ xZ yZ zZ δ2
Z x2

Z y2
Z z2

Z SM xγ yγ zγ x2
γ y2

γ z2
γ

s0 s s0 s0 sη s2 s s2 s3 s0 s0 / sη s s2 s3

δZxZ , δZyZ , xZyZ zZ · (δZ , xZ , yZ) xγyγ zγ · (xγ , yγ)
s s2η cos θ s s2η cos θ

(z′
1Z)2 (z′

2Z)2 (z′
3Z)2 z′

1Zz′
2Z z′

2Zz′
3Z (z′

2γ)2 (z′
3γ)2

s2 s s3 sη cos θ s s /

The cross sections for pp → WZ → WZ and pp →
Wγ → WZ, calculated with the exact (numerically eval-
uated) expressions for the cross sections for WZ → WZ
and Wγ → WZ, respectively, do not deviate by more than
16% from the same cross sections calculated with the high-
energy approximation for the WV → WZ cross sections if
the WV invariant mass is in the range 0.8 TeV ≤ √

s ≤ 2
TeV. This is true for all coupling strengths in the range
|αi| < 0.1. This result was obtained for a pseudorapidity
cut of η = 1. For Wγ production a similar result can be
expected.

We give expressions for the integrated cross sections
summed over the helicities of the outgoing particles. We
write the cross sections as

σTT ≡1
2
(σ++ + σ+−)

σTT ≡1
2
(σ++ − σ+−), (39)

with

σ++=
C

32πs

q

p

(
GT

++ + G++++,subleading + G++00

+G+++0 + G++−0 + G++0+ + G++0−)

σ+−=
C

32πs

q

p

(
GT

+− + G+−−+,subleading + G+−00

+G+−+0 + G+−−0 + G+−0+ + G+−0−) , (40)

and

σTL=
C

32πs

q

p
(G+00+ + G+00− + G+0+0 + G+0−0

+G+0++ + G+0−− + G+0+− + G+0−+ + G+000)

σLT =
C

32πs

q

p
(G0++0 + G0+−0 + G0+0+ + G0+0−

+G0+++ + G0+−− + G0++− + G0+−+ + G0+00)

σLL=
C

32πs

q

p
(G0000 + 2G00++

+2G00+− + 2G000+ + 2G00+0) . (41)

The quantities Gh1h2h3h4 in (41) are the squared helicity
amplitudes integrated over the scattering angle cos θ,

Gh1h2h3h4 ≡ 1
C

z0∫
−z0

|Mh1h2h3h4(cos θ)|2 d cos θ, (42)

where C is a coupling factor which is different for each
process and z0 is an integration limit for | cos θ| determined
e.g. by a cut. The indices h1h2h3h4 denote the helicities of
the particles WV2 → WV4 (in this order) and Mh1h2h3h4

is the scattering-amplitude. We further defined the sums
over the transverse helicity amplitudes,

GT
++

≡ G++++,leading + G++−− + G+++− + G++−+,

GT
+−
≡ G+−−+,leading + G+−+− + G+−++ + G+−−−. (43)

The expressions for GT
++ and GT

+− are the same for all
processes WV2 → WV4, Vi = γ, Z,

GT
++=2c4

W

[
16z0f1 − 8a2

W (2 ln1 −7z0 − z3
0)

−8a3
W (3z0 − 7

3
z3
0)

+a4
W (9z0 +

46
3

z3
0 +

z5
0

5
)
]
,

GT
+−=2c4

W

[
16z0f1 − 16 ln1 +18z0

+
2
3
z3
0 + 2a2

W (7z0 +
5
3
z3
0)

+a4
W (9z0 − 2

3
z3
0 +

z5
0

5
)
]
. (44)

p and q are the magnitudes of the three-momenta of
the vector bosons in the initial and in the final state, re-
spectively, evaluated in the center-of-mass system of the
vector bosons, given by

p, q =
√

s

2

√
1 − 2

s
(M2

W + M2
i ) +

1
s2 (M2

W − M2
i )2, (45)

where i = 2 for p and i = 4 for q. In (44) and below we
use the abbreviations

f1 ≡ 1
1 − z2

0
, ln1 ≡ ln

(
1 + z0

1 − z0

)
, rH ≡ M2

H

M2
W

, (46)

and tW ≡ sW /cW . The coupling factors C are given by

C=g4 forWZ → WZ,

C=g4t2W forWγ → WZ andWZ → Wγ,

C=g4t4W forWγ → Wγ. (47)
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B.1 WZ → WZ

For the process WZ → WZ there are 25 different helicity
amplitudes Mh1h2h3h4 , which cannot be related to each
other by the discrete symmetries C, P or T . Of these am-
plitudes, 15 have leading terms of the order O(s/4M2

W )0,
O(ai) or O(aiaj). Of these 15 terms, 6 only appear in the
sums GT

++ and GT
+−. The remaining 9 integrated squared

amplitudes are given by

G++00
00++

=2(aWΦ + aBΦ)2s2
W t2W z0

+2c2
W a2

W (1 − 4aWΦ)2
z3
0

3

G+−00
00+−

=
s2

W t2W
2

(
z0 +

z3
0

3t4W

)

G0+0+=
c4
W

2
(1 − t2W )4z0

G0+0−=2(1 − 2s2
W )2(aWΦ − t2W aBΦ)2(z0 +

z3
0

3
)

G+00+
0++0

=8c2
W z0f1 − 2(1 − 2s2

W ) ln1 +
z0

2c2
W

(1 − 2s2
W )2

G+00−
0+−0

=
c2
W

2
z0
(
(aWΦ + aBΦ)t2W − 3aW − 6aWΦaW

)2
+

z3
0

6
c2
W

[ (
(aWΦ + aBΦ)t2W + aW − 4aWΦaW

)2
+4
(
(aWΦ + aBΦ)t2W − 3aW

−6aWΦaW ) aWΦaW

]
+

2
5
z5
0a2

WΦa2
W c2

W

G+0+0=
1
2
z0

G+0−0=2a2
WΦ(z0 +

z3
0

3
)

G0000=2z0f1 − 1
2

ln1(2 − rH) +
1
8
z0(9 − 2rH + r2

H)

+
1
24

z3
0 + aWΦ(12 ln1 −15z0 + 3rHz0 − z3

0)

+a2
WΦ(−8 ln1 +43z0 + 3rHz0 +

z3
0

3
(25 − rH))

+a3
WΦ(36z0 − 28z3

0)

+a4
WΦ(18z0 + 20z3

0 + 2
z5
0

5
).

(48)

The subleading terms for G++++ and G+−−+ are given
by

G++++,subleading

= 8c2
W µW

[
aWΦ

(
8z0f1(2 − s2

W ) + t2W (1 − 2s2
W ) ln1

)
+aBΦ

(−8z0f1s
2
W + t2W (1 − 2s2

W ) ln1
)

+aW

(
(5 − 2s2

W ) ln1 −2z0(3 − s2
W )
)

+s2
W t2W (aWΦ + aBΦ)2 ln1

+aW (ln1 −2z0)
(
aW (3 − s2

W )

−2aWΦ(2 − s2
W ) + 2aBΦs2

W

)]
G+−−+,subleading

= 2c2
W µW

{
2(16z0f1 − 16 ln1 +17z0 +

z3
0

3
)

×[aWΦ(2 − s2
W ) − aBΦs2

W ]

−(8 ln1 −14z0 − 2
3
z3
0)

×
[
2aWΦ(aWΦ + t2W aBΦ)

+
1
2
aWΦ(1 +

1
c2
W

) +
1
2
t2W aBΦ

]}
, (49)

where we introduced the variable

µW ≡ 4M2
W

s
. (50)

The subleading terms which are quadrilinear in the
couplings are given by,

G+++0
+0++

=4µW c2
W a2

W (2aWΦ + aW )2(z0 − z3
0

3
)

G++−0
+0−−

=µW c2
W a2

W (aWΦ + aW )2(9z0 − 8
3
z3
0 − z5

0

5
)

G++0+
0+++

=4µW a2
W

(
c2
W (aWΦ − t2W aBΦ) + aWΦ + c2

W aW

)2
·(z0 − z3

0

3
)

G++0−
0+−−

=µW a2
W (aWΦ + c2

W aW )2(9z0 − 8
3
z3
0 − z5

0

5
)

G+−+0
+0+−

=µW c2
W a2

W

[
(a2

WΦ + a2
W )(z0 − z5

0

5
)

−2aWΦaW (z0 − 2
3
z3
0 +

z5
0

5
)
]

G+−−0
+0−+

=0
G+−0+

0++−
=0

G+−0−
0+−+

=µW a2
W

[
4c4

W (aWΦ − t2W aBΦ)2(z0 − z3
0

3
)

+(aWΦ + c2
W aW )2(z0 − z5

0

5
)

−4c2
W (aWΦ − t2W aBΦ)(aWΦ + c2

W aW )(z0 − z3
0

3
)
]

G+000
00+0

=µW a2
WΦ(aW + aWΦ)2(9z0 − 8

3
z3
0 − z5

0

5
)

G 0+00
000+

=µW
1

c2
W

a2
WΦ(aWΦ + c2

W aW )2(9z0 − 8
3
z3
0 − z5

0

5
).

(51)

B.2 Wγ → WZ

For Wγ → WZ the cross sections σTL and σLL vanish.
There are 27 different amplitudes, out of which 14 have
terms of the leading order. Of these amplitudes, 8 only
appear in the sums of the transverse amplitudes GT

++ and
GT

+−. For the remaining 6 helicity combinations, the inte-
grated squared amplitudes are given by the expressions,

G++00=2c2
W

[
a2

W (1 − 4a2
WΦ)

z3
0

3
+ (aWΦ + aBΦ)2z0

]
G+−00=

c2
W

2
(z0 +

z3
0

3
)

G0++0=2c2
W (4z0f1 − 2 ln1 +z0)
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G0+−0=
c2
W

2

[
(aWΦ + aBΦ)2(z0 +

z3
0

3
) + a2

W (9z0 +
z3
0

3
)

+(aWΦ + aBΦ)aW (6z0 − 2
3
z3
0)

+2aWΦaW (aWΦ + aBΦ)(6z0 +
2
3
z3
0)

+2aWΦa2
W (18z0 − 10

3
z3
0)

+2a2
WΦa2

W (18z0 − 4
3
z3
0 +

2
5
z5
0)
]

G0+0+=2(1 − 2s2
W )2z0

G0+0−=2
[
aWΦ(

3
2

− 2s2
W ) + aBΦ(

1
2

− 2s2
W )
]2

(z0 +
z3
0

3
).

(52)

The non-leading terms for G++++ und G+−−+ have the
following expressions,

G++++,subleading

= 8c2
W µW

[
aWΦ

(
4z0f1(3 − 2s2

W ) − ln1(
1
2

− 2s2
W )
)

+aBΦ

(
4z0f1(1 − 2s2

W ) − ln1(
1
2

− 2s2
W )
)

+aW

(
ln1(

7
2

− 2s2
W ) − 2z0(2 − s2

W )
)

−s2
W ln1(aWΦ + aBΦ)2

+(ln1 −2z0)aW

(
aW (2 − s2

W )

−aWΦ(3 − 2s2
W ) − aBΦ(1 − 2s2

W )
) ]

G+−−+,subleading

= 2c2
W µW

{
aWΦ

[
16z0f1(3 − 2s2

W ) − ln1(50 − 32s2
W )

+
z0

2
(109 − 68s2

W ) +
z3
0

3
(7 − 4s2

W )
]

+aBΦ

[
32z0f1c

2
W − ln1(22 − 32s2

W )

+
z0

2
(35 − 68s2

W ) +
z3
0

6
(1 − 4s2

W )
]

+aWΦ(aWΦ + aBΦ)(8 ln1 −14z0 − 2
3
z3
0)

}
. (53)

The subleading terms which are quadrilinear in the cou-
plings are given by,

G+++0=4c2
W µW a2

W (2aWΦ − aW )2(z0 − z3
0

3
)

G++−0=c2
W µW a2

W (aWΦ + aW )2(9z0 − 8
3
z3
0 − z5

0

5
)

G++0+=4µW a2
W

[
aWΦ + c2

W aW + c2
W (aWΦ − t2W aBΦ)

]2
×(z0 − z3

0

3
)

G++0−=µW a2
W

[
c4
W a2

W (9z0 − 8
3
z3
0 − z5

0

5
)

+12c2
W aW (aWΦ − aBΦ)(z0 − z3

0

3
)

+4(aWΦ − aBΦ)2(z0 − z3
0

3
)
]

G+−+0=c2
W µW a2

W

[
a2

W (z0 − z3
0

3
)

−2aW aWΦ(z0 − z3
0

3
) + a2

WΦ(z0 − z5
0

5
)

]
G+−−0=0
G+−0+=0

G+−0−=c4
W µW a2

W

[
a2

W (z0 − z5
0

5
)

−4aW (aWΦ + aBΦ)(z0 − z3
0

3
)

+4(aWΦ + aBΦ)2(z0 − z3
0

3
)
]

G0+++=4c4
W µW a2

W (aWΦ + aBΦ + aW )2(z0 − z3
0

3
)

G0+−−=µW a2
W

[
4(aBΦ + c2

W aW )2(z0 − z3
0

3
)

+4(aWΦ + c2
W aW )(aBΦ + c2

W aW )(z0 − z3
0

3
)
]

G0++−=0

G0+−+=µW a2
W

[
(aWΦ + c2

W aW )2(z0 − z5
0

5
)

−4(aWΦ + c2
W aW )c2

W (aWΦ − t2W aBΦ)(z0 − z3
0

3
)

+4c2
W (aWΦ − t2W aBΦ)2(z0 − z3

0

3
)
]

G0+00=µW c2
W a2

WΦa2
W (9z0 − 8

3
z3
0 − 2

5
z5
0). (54)

B.3 WZ → Wγ

The terms Gh1h2h3h4 for WZ → Wγ can be obtained
from the terms Gh1h2h3h4 for Wγ → WZ by exchanging
the helicity indices according to GWZ→Wγ

h1h2h3h4
= GWγ→WZ

h3h4h1h2
.

Also a parity transformation GWZ→Wγ
h1h2h3h4

= GWZ→Wγ
−h1−h2−h3−h4

might have to be applied. The combinations with h4 = 0
vanish.

B.4 Wγ → Wγ

For Wγ → Wγ the cross sections σTL and σLL and the
terms Gh1h2h3h4 with h4 = 0 vanish. There are 12 dif-
ferent helicity combinations which can not be related to
each other by discrete symmetries. 8 combinations receive
leading contributions. 6 of the latter combinations only
enter the expressions GT

++ and GT
+−. The remaining two

leading terms are given by

G0+0+=8c4
W z0

G0+0−=8c4
W (aWΦ + aBΦ)2(z0 +

1
3
z3
0). (55)

The subleading terms for G++++ and G+−−+ are given
by
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G++++,subleading

= µW c4
W

[
16(aWΦ + aBΦ)(4z0f1 − ln1)

+16aW (ln1 −z0)
+16aW (aWΦ + aBΦ)(2z0 − ln1)

−8a2
W (2z0 − ln1) + 8(aWΦ + aBΦ)2 ln1

]
G+−−+,subleading

= 4c4
W µW (aWΦ + aBΦ)

[
16(z0f1 − ln1) + 17z0 +

1
3
z3
0

]
.

(56)

The subleading terms which are quadrilinear in the cou-
plings are given by,

G++0+
0+++

=4µW c4
W a2

W (aWΦ + aBΦ + aW )2(z0 − 1
3
z3
0)

G++0−
0+−−

=µW c4
W a4

W (9z0 − 8
3
z3
0 − 1

5
z5
0)

G+−0+
0++−

=0

G+−0−
0+−+

=µW c4
W

[
a4

W (z0 − 1
5
z5
0)

−4a3
W (aWΦ + aBΦ)(z0 − 1

3
z3
0)

+4a2
W (aWΦ + aBΦ)2(z0 − 1

3
z3
0)
]
. (57)
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